Thin Solid Films 2006, 511:654.CrossRef 2. Shockley W, Queisser HJ: Detailed balance
limit of efficiency of p-n junction solar cells. J Appl Phys 1961, 32:510.CrossRef 3. Beard MC, Knutsen KP, Yu P, Luther JM, Song Q, Metzger WK, Ellingson RJ, Nozik AJ: Multiple exciton generation in colloidal silicon nanocrystals. Nano LEE011 Lett 2007, 7:2506.CrossRef 4. Green MA: Third generation photovoltaics and feasibility of realization. In Tech Dig of the 15th International Photovoltaic Science and Engineering Conference: 10–15 Oct 2005. Shanghai; 7. 5. Hanna MC, Nozik AJ: Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J Appl Phys 2006, 100:074510.CrossRef 6. Zacharias M, Heitmann J, Scholz R, Kahler U, Schmidt M, Bläsing J: Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO 2 superlattice approach. Appl Phys Lett 2002, 80:661.CrossRef 7. Cho Y-H, Cho E-C, Huang Y, Jiang C-W, Conibeer G, Green MA: Silicon quantum dots in SiN x matrix for third generation photovoltaics. In Proc 20th European Photovoltaic Solar Energy Conference.
Barcelona; 2005:47. 8. Kurokawa Y, Miyajima S, Yamada A, Konagai M: Preparation of selleck chemicals nanocrystalline silicon in amorphous silicon carbide matrix. Jpn J Appl Phys Part 2 2006, 45:L1064.CrossRef 9. Song D, Cho E-C, Cho Y-H, Conibeer G, Huang Y, Huang S, Green MA: Evolution of Si (and SiC) nanocrystal precipitation in Akt activity SiC matrix. Thin Solid Films 2008, Etomidate 516:3824.CrossRef 10. Di D, Perez-Wurfl I, Conibeer G, Green MA: Formation and photoluminescence of Si quantum dots in SiO 2 /Si 3 N 4 hybrid matrix for all-Si tandem solar cells. Sol Energy Mater Sol Cells 2010, 94:2238.CrossRef 11. Ding K, Aeberhard U, Astakhov O, Köhler F, Beyer W, Finger F, Carius R, Rau U: Silicon quantum dot formation in SiC/SiO x hetero-superlattice.
Energy Procedia 2011, 10:249.CrossRef 12. Kurokawa Y, Tomita S, Miyajima S, Yamada A, Konagai M: Photoluminescence from silicon quantum dots in Si quantum dots/amorphous SiC superlattice. Jpn J Appl Phys Part 2 2007, 46:L833.CrossRef 13. Hartel AM, Gutsch S, Hiller D, Zacharias M: Fundamental temperature-dependent properties of the Si nanocrystal band gap. Phys Rev B 2012, 85:165306.CrossRef 14. Hao XJ, Podhorodecki A, Shen YS, Zatryb G, Misiewicz J, Green MA: Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QDs/SiO 2 multilayer film. Nanotechnology 2009, 20:485703.CrossRef 15. Jiang C, Green MA, Silicon quantum dot superlattices: Modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. J Appl Phys 2006, 99:114902.CrossRef 16.