These previous and present results suggest that the restoration of E-cadherin expression by inhibiting any of the upstream signals promoting the EMT may prevent the initiation and progression of lymph node metastasis of HNSCC. Further investigations are indispensable to establish the optimal standard to evaluate the
risk of metastasis using molecular markers related to the EMT. In conclusion, our findings suggest that the downregulation of CDH-1 resulting from the induction of the EMT is closely involved in lymph node metastasis in HNSCC. The expression profiles of EMT-related molecular makers in primary tumors are thought to find more be GSK-3 inhibitor informative to predict the clinicopathological behavior of HNSCC. In addition, the appropriately selective administration of selective Cox-2 inhibitors may lead to an anti-metastatic effect as suppression of the EMT by restoring E-cadherin expression through the downregulation of its transcriptional repressors, cooperatively with various other mechanisms.
Acknowledgement This study was supported in part by Grants-in-Aid for Scientific Research (C) from MEXT (Number 222591917), and by Keio Gijuku Academic Development Funds to {Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|buy Anti-infection Compound Library|Anti-infection Compound Library ic50|Anti-infection Compound Library price|Anti-infection Compound Library cost|Anti-infection Compound Library solubility dmso|Anti-infection Compound Library purchase|Anti-infection Compound Library manufacturer|Anti-infection Compound Library research buy|Anti-infection Compound Library order|Anti-infection Compound Library mouse|Anti-infection Compound Library chemical structure|Anti-infection Compound Library mw|Anti-infection Compound Library molecular weight|Anti-infection Compound Library datasheet|Anti-infection Compound Library supplier|Anti-infection Compound Library in vitro|Anti-infection Compound Library cell line|Anti-infection Compound Library concentration|Anti-infection Compound Library nmr|Anti-infection Compound Library in vivo|Anti-infection Compound Library clinical trial|Anti-infection Compound Library cell assay|Anti-infection Compound Library screening|Anti-infection Compound Library high throughput|buy Antiinfection Compound Library|Antiinfection Compound Library ic50|Antiinfection Compound Library price|Antiinfection Compound Library cost|Antiinfection Compound Library solubility dmso|Antiinfection Compound Library purchase|Antiinfection Compound Library manufacturer|Antiinfection Compound Library research buy|Antiinfection Compound Library order|Antiinfection Compound Library chemical structure|Antiinfection Compound Library datasheet|Antiinfection Compound Library supplier|Antiinfection Compound Library in vitro|Antiinfection Compound Library cell line|Antiinfection Compound Library concentration|Antiinfection Compound Library clinical trial|Antiinfection Compound Library cell assay|Antiinfection Compound Library screening|Antiinfection Compound Library high throughput|Anti-infection Compound high throughput screening| Y. Imanishi. We thank the Core Instrumentation Facility, Keio University School of Medicine for technical assistance. References 1. Haddad RI, Shin DM: Recent advances in head and neck cancer. N Engl J http://www.selleck.co.jp/products/Fasudil-HCl(HA-1077).html Med 2008, 359:1143–1154.PubMedCrossRef 2. Hunter KD, Parkinson EK, Harrison PR: Profiling early head and neck cancer. Nat Rev Cancer 2005, 5:127–135.PubMedCrossRef 3. DiTroia JF: Nodal metastases and prognosis in carcinoma of the oral cavity. Otolaryngol Clin North Am 1972, 5:333–342.PubMed 4. Cerezo L, Millan I, Torre A, Aragon G, Otero J: Prognostic factors for survival and tumor control in cervical lymph node metastases from head and neck cancer. A multivariate study of 492 cases.
Cancer 1992, 69:1224–1234.PubMedCrossRef 5. Leemans CR, Tiwari R, Nauta JJ, van der Waal I, Snow GB: Recurrence at the primary site in head and neck cancer and the significance of neck lymph node metastases as a prognostic factor. Cancer 1994, 73:187–190.PubMedCrossRef 6. Berx G, Raspe E, Christofori G, Thiery JP, Sleeman JP: Pre-EMTing metastasis? Recapitulation of morphogenetic processes in cancer. Clin Exp Metastasis 2007, 24:587–597.PubMedCrossRef 7. Kalluri R, Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest 2009, 119:1420–1428.PubMedCentralPubMedCrossRef 8. Baranwal S, Alahari SK: Molecular mechanisms controlling E-cadherin expression in breast cancer. Biochem Biophys Res Commun 2009, 384:6–11.PubMedCentralPubMedCrossRef 9.